• 高一历史教案
  • 一年级西师大版教案
  • 高三湘教版教案
  • 二年级物理教案
  • 三年级粤教版教案
  • 六年级华师大版教案
  • 高三化学教案
  • 二年级上册教案
  • 一年级湘教版教案
  • 高一上册数学人教A版数学必修一教案2.1.2指数函数及其性质(2)

    2020-12-18 高一上册数学人教版

    
    第2课时
    教学过程:
    1、复习指数函数的图象和性质
    2、例题
    例1:(P57例7)比较下列各题中的个值的大小
    (1)1.72.5 与 1.73
    ( 2 )与
    ( 3 ) 1.70.3 与 0.93.1
    解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .
    解法2:用计算器直接计算:
    所以,
    解法3:由函数的单调性考虑
    因为指数函数在R上是增函数,且2.5<3,所以,
    仿照以上方法可以解决第(2)小题 .
    注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .
    由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .
    思考:
    1、已知按大小顺序排列.
    2. 比较(>0且≠0).
    指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.
    例2(P57例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
    分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:
    1999年底 人口约为13亿
    经过1年 人口约为13(1+1%)亿
    经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿
    经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿
    经过年 人口约为13(1+1%)亿
    经过20年 人口约为13(1+1%)20亿
    解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则
    当=20时,
    答:经过20年后,我国人口数最多为16亿.
    小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,>0且≠1)的函数称为指数型函数 .
    思考:P58探究:
    (1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .
    (2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .
    (3)你看到我国人口数的增长呈现什么趋势?
    (4)如何看待计划生育政策?
    3.课堂练习
    (1)右图是指数函数① ② ③ ④的图象,判断与1的大小关系;
    (2)设其中>0,≠1,确定为何值时,有:
    ① ②>
    (3)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢与漂洗次数的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).
    归纳小结:本节课研究了指数函数性质的应用,关键是要记住>1或0<<时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a>0且≠1).
    作业:P59 A组第 7 ,8 题    P60 B组 第 1,4题
    相关推荐
    上一篇:高中数学 1.1.1命题教案 新人教A版选修1-1 下一篇:让我印高中数学 3.3.3函数的最大(小) 值与导数教案 新人教A版选修1-1
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案