教学目标:1.使学生理解增函数、减函数的概念;
2.使学生掌握判断某些函数增减性的方法;
3.培养学生利用数学概念进行判断推理的能力;
4.培养学生数形结合、辩证思维的能力;
5.养成细心观察、认真分析、严谨论证的良好思维习惯。
教学重点:函数单调性的概念
教学难点:函数单调性的判断和证明
教学方法:讲授法
教学过程:
(I)复习回顾
1.函数有哪几个要素?
2.函数的定义域怎样确定?怎样表示?
3.函数的表示方法常见的有哪几种?各有什么优点?
4.区间的表示方法.
前面我们学习了函数的概念、表示方法以及区间的概念,现在我们来研究一下函数的性质(导入课题,板书课题)。
(II)讲授新课
1.引例:观察y=x2的图象,回答下列问题(投影1)
问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?
随着x的增加,y值在增加。
问题2:怎样用数学语言表示呢?
设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1
结论:这时,说y1= x2在[0,+∞]上是增函数。(同理分析y轴左侧部分)由此可有:
2.定义:(投影2)
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1x2时都有f(x1)< f(x2).那么就说f(x)在这个区间上是增函数(increasing function)。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的。
注意:(1)函数的单调性也叫函数的增减性;
(2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。
(III)例题分析
例1.下图是定义在闭区间上的函数y=f(x)的图象,根据图象说出函数的单调区间,以及在每一个区间上的单调性(课本P34例1)。
问题3:y=f(x)在区间,上是减函数;在区间,上是增函数,那么在两个区间的公共端点处,如:x=-2,x=-1,x=3处是增函数还是减函数?
分析:函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因此没有增减变化,所以不存在单调性问题;另一方面,中学阶段研究的是连续函数或分段连续函数,对于闭区间的连续函数而言,只要在开区间单调,则它在闭区间也单调。因此在考虑它的单调区间时,包括不包括端点都可以(要注意端点是否在定义域范围内)。
说明:要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。
例2.证明函数f(x)=3x+2在R上是增函数。
证明:设任意x1、x2∈R,且x1
由x1
分析:判定函数在某个区间上的单调性的方法步骤:
a.设x1、x2∈给定区间,且x1
c.判断上述差的符号;
d.下结论。
例3.教材第34页例2。
(IV)课堂练习 课本P35 “探究题”和P38练习1—3
注意:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
(V)课时小结
本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。
(VI)课后作业
1、书面作业:课本P45习题1.3A组题1、2、3、4题。
2、预习作业:
(1)预习内:容函数的最大值与最小值(P35—P38);
(2)预习提纲:
a.函数最大值与最小值的含义是什么?
b. 函数最大值与最小值和函数的单调性有何关系?
1.3.1 单调性与最大(小)值(第二课时)
教学目标:1.使学生理解函数最大(小)值及其几何意义;
2.使学生掌握函数最值与函数单调性的关系;
3.使学生掌握一些单调函数在给定区间上的最值的求法;
4.培养学生数形结合、辩证思维的能力;
5.养成细心观察、认真分析、严谨论证的良好思维习惯。
教学重点:函数最值的含义
教学难点:单调函数最值的求法
教学方法:讲授法
教学过程:
(I)复习回顾
1.函数单调性的概念;
2.函数单调性的判定。
(II)讲授新课
通过观察二次函数和的最高点和最低点引出函数最值的概念(板书课题)
1.函数最大值与最小值的含义
一般地,设函数的定义域为,如果存在实数满足:
(1)对于任意的,都有;
(2)存在,使得。
那么,我们称是函数的最大值(maximum value).
思考:你能仿照函数最大值的定义,给出函数的最小值(minimum value)吗?
2.二次函数在给定区间上的最值
对二次函数来说,若给定区间是,则当时,函数有最小值是,当时,函数有最大值是;若给定区间是,则必须先判断函数在这个区间上的单调性,然后再求最值(见下列例题)。
3.例题分析
例1.教材第36页例题3。
例2.求函数在区间[2,6]上的最大值和最小值(教材第37页例4)。
分析:先判定函数在区间[2,6]上的单调性,然后再求最大值和最小值。
变式:若区间为呢?
例3.求函数在下列各区间上的最值:
(1) (2)[1,4] (3) (4) (5)
练习:教材第38页练习4及第二教材相关题目。
作业:教材第45页习题1.3 A组题第6、7、8题