第一部分 坐标系
第1节:平面直角坐标系
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:体会直角坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业: