• 高二人教版教案
  • 高一苏教版教案
  • 四年级人教版教案
  • 九年级人教版教案
  • 七年级苏教版教案
  • 五年级华师大版教案
  • 三年级粤教版教案
  • 二年级语文教案
  • 一年级上册教案
  • 高中数学选修2-3 第三章 统计案例 3.2学业分层测评 Word版含答案

    2021-05-28 高二下册数学人教版

    学业分层测评
    (建议用时:45分钟)
    [学业达标]
    一、选择题
    1.通过对K2的统计量的研究得到了若干个临界值,当K2≤2.706时,我们认为(  )
    A.在犯错误的概率不超过0.05的前提下认为X与Y有关系
    B.在犯错误的概率不超过0.01的前提下认为X与Y有关系
    C.没有充分理由认为X与Y有关系
    D.不能确定
    【解析】 ∵K2≤2.706,∴没有充分理由认为X与Y有关系.
    【答案】 C
    2.下列关于等高条形图的叙述正确的是(  )
    A.从等高条形图中可以精确地判断两个分类变量是否有关系
    B.从等高条形图中可以看出两个变量频数的相对大小
    C.从等高条形图中可以粗略地看出两个分类变量是否有关系
    D.以上说法都不对
    【解析】 在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.
    【答案】 C
    3.分类变量X和Y的列联表如下:
    y1
    y2
    总计
    x1
    a
    b
    a+b
    x2
    c
    d
    c+d
    总计
    a+c
    b+d
    a+b+c+d
    则下列说法正确的是(  )
    A.ad-bc越小,说明X与Y关系越弱
    B.ad-bc越大,说明X与Y关系越弱
    C.(ad-bc)2越大,说明X与Y关系越强
    D.(ad-bc)2越接近于0,说明X与Y关系越强
    【解析】 对于同一样本,|ad-bc|越小,说明X与Y之间关系越弱;|ad-bc|越大,说明X与Y之间的关系越强.
    【答案】 C
    4.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A和B有关系,则具体计算出的数据应该是(  )
    A.k≥6.635      B.k<6.635
    C.k≥7.879 D.k<7.879
    【解析】 有99.5%的把握认为事件A和B有关系,即犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.
    【答案】 C
    5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下表的列联表:


    总计
    爱好
    40
    20
    60
    不爱好
    20
    30
    50
    总计
    60
    50
    110
    由K2=算得,
    k=≈7.8.
    附表:
    P(K2≥k0)
    0.050
    0.010
    0.001
    k0
    3.841
    6.635
    10.828
    参照附表,得到的正确结论是(  )
    A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
    B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
    C.有99%以上的把握认为“爱好该项运动与性别有关”
    D.有99%以上的把握认为“爱好该项运动与性别无关”
    【解析】 由k≈7.8及P(K2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.
    【答案】 C
    二、填空题
    6.在对某小学的学生进行吃零食的调查中,得到如下表数据:
    吃零食
    不吃零食
    总计
    男学生
    27
    34
    61
    女学生
    12
    29
    41
    总计
    39
    63
    102
    根据上述数据分析,我们得出的K2的观测值k约为________. 【导学号:97270063】
    【解析】 由公式可计算得k=≈2.334.
    【答案】 2.334
    7.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射14天内的结果如表所示:
    死亡
    存活
    总计
    第一种剂量
    14
    11
    25
    第二种剂量
    6
    19
    25
    总计
    20
    30
    50
    进行统计分析时的统计假设是________.
    【解析】 根据独立性检验的基本思想,可知类似于反证法,即要确认“两个分量有关系”这一结论成立的可信程度,首先假设该结论不成立.对于本题,进行统计分析时的统计假设应为“小白鼠的死亡与电离辐射的剂量无关”.
    【答案】 小白鼠的死亡与电离辐射的剂量无关
    8.在吸烟与患肺病是否相关的判断中,有下面的说法:
    ①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
    ②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;
    ③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.
    其中说法正确的是________.(填序号)
    【解析】 K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.
    【答案】 ③
    三、解答题
    9.用两种检验方法对某食品做沙门氏菌检验,结果如下表.
    阳性
    阴性
    总计
    荧光抗体法
    160
    5
    165
    常规培养法
    26
    48
    74
    总计
    186
    53
    239
    附:
    P(K2≥k0)
    0.010
    0.005
    0.001
    k0
    6.635
    7.879
    10.828
    (1)利用图形判断采用荧光抗体法与检验结果呈阳性是否有关系;
    (2)能否在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系?
    【解】 (1)作出等高条形图如图所示,由图知采用荧光抗体法与检验结果呈阳性有关系.
    (2)通过计算可知K2=≈113.184 6.而查表可知,因为P(K2≥10.828)≈0.001,而113.184 6远大于10.828,所以在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系.
    10.有人发现一个有趣的现象,中国人的邮箱里含有数字比较多,而外国人邮箱名称里含有数字比较少,为了研究国籍和邮箱名称里含有数字的关系,他收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.
    (1)根据以上数据建立2×2列联表;
    (2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?
    【解】 (1)2×2的列联表:
    中国人
    外国人
    总计
    有数字
    43
    27
    70
    无数字
    21
    33
    54
    总计
    64
    60
    124
    (2)假设“国籍和邮箱名称里与是否含有数字无关”.
    由表中数据得k=≈6.201.
    因为k>5.024,所以有理由认为假设“国籍和邮箱名称里与是否含有数字无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“国籍和邮箱名称里与是否含有数字有关”.
    [能力提升]
    1.对两个分类变量A,B,下列说法中正确的个数为(  )
    ①A与B无关,即A与B互不影响;
    ②A与B关系越密切,则K2的值就越大;
    ③K2的大小是判定A与B是否相关的唯一依据.
    A.1    B.2    C.3    D.0
    【解析】 ①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A与B是否相互独立;③不正确,也可借助等高条形图等.故选A.
    【答案】 A
    2.(2016·晋江市季延中学期中)某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列叙述中正确的是(  )
    A.有95%的把握认为“这种血清能起到预防感冒的作用”
    B.若有人未使用该血清,那么他一年中有95%的可能性得感冒
    C.这种血清预防感冒的有效率为95%
    D.这种血清预防感冒的有效率为5%
    【解析】 K2≈3.918>3.841,因此有95%的把握认为“这种血清能起到预防感冒的作用”,故选A.
    【答案】 A
    3.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:
    无效
    有效
    总计
    男性患者
    15
    35
    50
    女性患者
    6
    44
    50
    总计
    21
    79
    100
    设H:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留一位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.
    【解析】 由公式计算得K2的观测值k≈4.9.∵k>3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.
    【答案】 4.9 5%
    4.(2016·潍坊高二检测)为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10 000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
    高茎
    矮茎
    总计
    圆粒
    11
    19
    30
    皱粒
    13
    7
    20
    总计
    24
    26
    50
    (1)现采用分层抽样的方法,从该样本所含的圆粒玉米中取出6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;
    (2)根据对玉米生长情况作出的统计,是否有95%的把握认为玉米的圆粒与玉米的高茎有关?
    【解】 (1)依题意,取出的6株圆粒玉米中含高茎2株,记为a,b;矮茎4株,记为A,B,C,D,从中随机选取2株的情况有如下15种:aA,aB,aC,aD,bA,bB,bC,bD,ab,AB,AC,AD,BC,BD,CD.
    其中满足题意的共有aA,aB,aC,aD,bA,bB,bC,bD,共8种,则所求概率为P=.
    (2)根据已知列联表,
    得k=≈3.860>3.841,即有95%的把握认为玉米的圆粒与玉米的高茎有关.
    相关推荐
    上一篇:高中数学必修4课时达标检测(二十二)平面向量数量积的物理背景及其含义 Word版含解析 下一篇:让我印高中数学选修2-2课时作业:第一章 导数及其应用1.3.3函数的最大(小)值与导数
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案