• 作文中心化学作文
  • 作文中心苏教版作文
  • 小学作文英语作文
  • 初中作文地理作文
  • 初中作文青岛版作文
  • 初中作文语文作文
  • 高中作文数学作文
  • 高中作文下册作文
  • 初中作文苏教版作文
  • 高中数学选修1-1课时提升作业 导数的计算 第2课时 导数的运算法则Word版含答案

    2021-06-05 高一上册数学人教版

    温馨提示:
    此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
    课时提升作业 二十一
    导数的运算法则
    一、选择题(每小题5分,共25分)
    1.关于x的函数f(x)=cosx+sina,则f′(0)等于 (  )
    A.0 B.-1 C.1 D.±1
    【解析】选A.f′(x)=-sinx,f′(0)=0.
    2.(2016·临沂高二检测)若曲线f(x)=xsinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于 (  )
    A.-2 B.-1 C.1 D.2
    【解析】选D.f′(x)=sinx+xcosx,f′=1,
    由题意得-=-1,
    即a=2.
    3.(2016·德州高二检测)函数y=(a>0)在x=x0处的导数为0,那么x0等
    于 (  )
    A.a B.±a C.-a D.a2
    【解析】选B.y′=
    ==.
    由=0,得x0=±a.
    4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为 (  )
    A.3 B.-3 C.5 D.-5
    【解析】选A.由点(1,3)在直线y=kx+1上,得k=2,
    由点(1,3)在曲线y=x3+ax+b上,得1+a+b=3,
    即a+b=2,
    y′=3x2+a,
    由题意得3×12+a=2.
    所以a=-1.
    所以b=3.
    5.(2016·武汉高二检测)正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是 (  )
    A.∪ B.[0,π)
    C. D.∪
    【解析】选A.因为(sinx)′=cosx,
    因为kl=cosx,所以-1≤kl≤1,
    所以αl∈∪.
    二、填空题(每小题5分,共15分)
    6.(2016·滨州高二检测)在曲线y=上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为    .
    【解析】设点P(x0,y0),y′=′=(4x-2)′=-8x-3,
    所以tan135°=-1=-8,
    所以x0=2.所以y0=1.所以P点坐标为(2,1).
    答案:(2,1)
    7.(2016·天津高考)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为    .
    【解题指南】求出f′(x),代入x=0即可.
    【解析】因为f′(x)=(2x+3)ex,所以f′(0)=3.
    答案:3
    8.曲线y=xlnx在点(e,e)处的切线方程为    .
    【解析】因为y′=lnx+1,y′=2,
    所以切线方程为y-e=2(x-e),即2x-y-e=0.
    答案:2x-y-e=0
    三、解答题(每小题10分,共20分)
    9.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示,求f(x)的解析式.
    【解题指南】本题主要考查利用导数求解参数问题,观察y=f′(x)的图象可知y=f′(x)过点(1,0),(2,0),即f′(1)=0,f′(2)=0.
    【解析】f′(x)=3ax2+2bx+c,
    又f′(1)=0,f′(2)=0,f(1)=5,故
    解得a=2,b=-9,c=12.
    故f(x)的解析式是f(x)=2x3-9x2+12x.
    10.已知函数f(x)=的图象在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.
    【解析】由于(-1,f(-1))在切线上,
    所以-1+2f(-1)+5=0,所以f(-1)=-2.
    因为f′(x)=,
    所以
    解得a=2,b=3(因为b+1≠0,所以b=-1舍去).
    故f(x)=.
    一、选择题(每小题5分,共10分)
    1.(2016·临沂高二检测)已知函数f(x)=x3+(b-|a|)x2+ (a2-4b)x是奇函数,则
    f′(0)的最小值是 (  )
    A.-4 B.0 C.1 D.4
    【解析】选A.由f(x)是奇函数,
    得b-|a|=0,即b=|a|,
    所以f(x)=x3+(b2-4b)x(b≥0),
    f′(x)=3x2+(b2-4b),f′(0)=b2-4b=(b-2)2-4,
    当b=2时,f′(0)取最小值-4.
    2.(2016·广州高二检测)已知f(x)=x2+cosx,f′(x)为f(x)的导函数,则f′(x)的大致图象是 (  )
    【解析】选A.因为f(x)=x2+cosx,所以f′(x)=-sinx.又因为f′(-x)=
    -sin(-x)=-=-f′(x),
    故f′(x)为奇函数,故函数f′(x)的图象关于原点对称,排除B、D,又因为
    f′=×-sin=-<0,排除C.
    二、填空题(每小题5分,共10分)
    3.(2015·全国卷Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=     .
    【解析】y′=1+,则曲线y=x+lnx在点(1,1)处的切线斜率为k=f′(1)=1+1=2,故切线方程为y=2x-1.因为y=2x-1与曲线y=ax2+(a+2)x+1相切,联立得ax2+ax+2=0,显然a≠0,所以由Δ=a2-8a=0⇒a=8.
    答案:8
    【补偿训练】若f(x)=(2x+a)2,且f′ (2)=20,则a=    .
    【解析】f(x)=(2x+a)2=4x2+4ax+a2,f′(x)=8x+4a,
    所以f′(2)=16+4a=20,所以a=1.
    答案:1
    4.(2015·太原高二检测)已知函数f(x)的导函数为f′(x),且满足f(x)=
    2xf′(e)+lnx则f′(e)=    .
    【解析】因为f(x)=2xf′(e)+lnx,
    所以f′(x)=2f′(e)+,所以f′(e)=2f′(e)+,
    解得f′(e)=-.
    答案:-
    三、解答题(每小题10分,共20分)
    5.(2016·烟台高二检测)已知二次函数f(x)=ax2+bx+3(a≠0),其导函数
    f′(x)=2x-8.
    (1)求a,b的值.
    (2)设函数g(x)=exsinx+f(x),求曲线g(x)在x=0处的切线方程.
    【解析】(1)因为f(x)=ax2+bx+3(a≠0),
    所以f′(x)=2ax+b,
    又知f′(x)=2x-8,
    所以a=1,b=-8.
    (2)由(1)可知g(x)=exsinx+x2-8x+3,
    所以g′(x)=exsinx+excosx+2x-8,
    所以g′(0)=e0sin0+e0cos0+2×0-8=-7,
    又知g(0)=3.
    所以曲线g(x)在x=0处的切线方程为y-3=-7(x-0),
    即7x+y-3=0.
    6.(2016·重庆高二检测)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,
    f′(2)=-b,其中常数a,b∈R.求曲线y=f(x)在点(1,f(1))处的切线方程.
    【解题指南】求出导函数,根据f′(1)=2a,f′(2)=-b求出a,b,最后将x=1分别代入原函数及导函数求出f(1)及切线斜率.
    【解析】因为f(x)=x3+ax2+bx+1,所以f′(x)=3x2+2ax+b.
    令x=1,得f′(1)=3+2a+b,又f′(1)=2a,
    因此3+2a+b=2a,解得b=-3.
    又令x=2,得f′(2)=12+4a+b,
    又f′(2)=-b,因此12+4a+b=-b,解得a=-.
    因此f(x)=x3-x2-3x+1,从而f(1)=-.
    又f′(1)=2×=-3,
    故曲线y=f(x)在点(1,f(1))处的切线方程为y-=-3(x-1),即6x+2y-1=0.
    关闭Word文档返回原板块
    相关推荐
    上一篇:高中数学 指数与指数幂的运算习题 新人教A版必修1 下一篇:让我印高中数学选修1-2课时提升作业四1.2 演绎推理 习题 Word版含答案
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案