• 高二下册试卷
  • 三年级地理试卷
  • 九年级下册试卷
  • 一年级上册试卷
  • 九年级英语试卷
  • 七年级数学试卷
  • 高一人教版试卷
  • 七年级语文试卷
  • 三年级物理试卷
  • 高中数学必修5配套练习 等差数列的前n项和 第2课时

    2021-01-12 高三上册数学人教版

    第二章 2.3 第2课时
    一、选择题
    1.记等差数列{an}的前n项和为Sn.若d=3,S4=20,则S6=(  )
    A.16        B.24
    C.36     D.48
    [答案] D
    [解析] 由S4=20,4a1+6d=20,解得a1=⇒S6=6a1+×3=48.
    2.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn是等差数列{an}的前n项和,则使得Sn达到最大值的n是(  )
    A.21 B.20
    C.19 D.18
    [答案] B
    [解析] 由题设求得:a3=35,a4=33,∴d=-2,a1=39,∴an=41-2n,a20=1,a21=-1,所以当n=20时Sn最大.故选B.
    3.+++…+=(  )
    A.  B.
    C. D.
    [答案] B
    [解析] 原式=(-)+(-)+…+(-)=(-)=,故选B.
    4.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{}的前100项和为(  )
    A.  B.
    C. D.
    [答案] A
    [解析] 本小题主要考查等差数列的通项公式和前n项和公式的运用,以及裂项求和的综合应用.
    ∵a5=5,S5=15
    ∴=15,∴a1=1.
    ∴d==1,∴an=n.
    ∴==-.
    则数列{}的前100项的和为:T100=(1-)+(-)+…+(-)=1-=.
    故选A.
    5.设等差数列{an}的前n项的和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为(  )
    A.5 B.6
    C.7 D.8
    [答案] B
    [解析] 解法一:∵a1>0,S4=S8,∴d<0,且a1=d,∴an=-d+(n-1)d=nd-d,由,得,∴5解法二:∵a1>0,S4=S8,
    ∴d<0且a5+a6+a7+a8=0,
    ∴a6+a7=0,∴a6>0,a7<0,
    ∴前六项之和S6取最大值.
    6.设{an}是等差数列,Sn为其前n项和,且S5S8,则下列结论错误的是(  )
    A.d<0 B.a7=0
    C.S9>S5 D.S6与S7均为Sn的最大值
    [答案] C
    [解析] 由S50,由S6=S7知a7=0,
    由S7>S8知a8<0,C选项S9>S5即a6+a7+a8+a9>0,∴a7+a8>0,显然错误.
    二、填空题
    7.设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S5=________.
    [答案] 25
    [解析] 由得,
    ∴S5=5a1+×d=25.
    8.(2014·北京理,12)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大.
    [答案] 8
    [解析] 本题考查了等差数列的性质与前n项和.
    由等差数列的性质,a7+a8+a9=3a8,a7+a10=a8+a9,于是有a8>0,a8+a9<0,故a9<0,故S8>S7,S90公差d<0,{an}是一个递减的等差数列,前n项和有最大值,a1<0,公差d>0,{an}是一个递增的等差数列,前n项和有最小值.
    三、解答题
    9.设等差数列{an}满足a3=5,a10=-9.
    (1)求{an}的通项公式;
    (2)求{an}的前n项和Sn及使得Sn取最大值的n的值.
    [解析] (1)设公差为d,由已知得,解得.∴an=a1+(n-1)d=-2n+11.
    (2)由(1)知Sn=na1+d=10n-n2=-(n-5)2+25,
    ∴当n=5时,Sn取得最大值.
    10.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.
    (1)求an及Sn;
    (2)令bn=(n∈N*),求数列{bn}的前n项和Tn.
    [解析] (1)设等差数列{an}的首项为a,公差为d,
    由于a3=7,a5+a7=26,
    ∴a1+2d=7,2a1+10d=26,
    解得a1=3,d=2.
    ∴an=2n+1,Sn=n(n+2).
    (2)∵an=2n+1,
    ∴a-1=4n(n+1),
    ∴bn==(-).
    故Tn=b1+b2+…+bn
    =(1-+-+…+-)
    =(1-)
    =,
    ∴数列{bn}的前n项和Tn=.
    一、选择题
    1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于(  )
    A.12 B.16
    C.9 D.16或9
    [答案] C
    [解析] an=120+5(n-1)=5n+115,
    由an<180得n<13且n∈N*,
    由n边形内角和定理得,
    (n-2)×180=n×120+×5.
    解得n=16或n=9
    ∵n<13,∴n=9.
    2.已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,则使得Sn>0的最大值n为(  )
    A.11 B.19
    C.20 D.21
    [答案] B
    [解析] ∵Sn有最大值,∴a1>0,d<0,
    ∵<-1,
    ∴a11<0,a10>0,∴a10+a11<0,
    ∴S20==10(a10+a11)<0,
    又S19==19a10>0,故选B.
    3.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是(  )
    A.a8 B.a9
    C.a10 D.a11
    [答案] D
    [解析] S11=5×11=55=11a1+d=55d-55,
    ∴d=2,S11-x=4×10=40,∴x=15,
    又a1=-5,由ak=-5+2(k-1)=15得k=11.
    4.设{an}是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n项和最大时,n等于(  )
    A.4 B.5
    C.6 D.7
    [答案] A
    [解析] ∵{an}是等差数列,且a1+a2+a3=15,∴a2=5,
    又∵a1·a2·a3=105,
    ∴a1a3=21,由及{an}递减可求得a1=7,d=-2,∴an=9-2n,由an≥0得n≤4,∴选A.
    二、填空题
    5.已知{an}是等差数列,Sn为其前n项和,n∈N*.若a3=16,S20=20,则S10的值为________.
    [答案] 110
    [解析] 设等差数列{an}的首项为a1,公差为D.
    a3=a1+2d=16,S20=20a1+d=20,
    ∴解得d=-2,a1=20.
    ∴S10=10a1+d=200-90=110.
    6.等差数列{an}中,d<0,若|a3|=|a9|,则数列{an}的前n项和取最大值时,n的值为______________.
    [答案] 5或6
    [解析] ∵a1+a11=a3+a9=0,
    ∴S11==0,
    根据二次函数图象的性质,由于n∈N*,所以当n=5或n=6时Sn取最大值.
    三、解答题
    7.一等差数列共有偶数项,且奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差以及项数.
    [解析] 解法1:设此数列的首项a1,公差d,项数2k(k∈N*).
    根据题意,得,即
    ∴,解得.
    由S奇=(a1+a2k-1)=24,可得a1=.
    ∴此数列的首项为,公差为,项数为8.
    解法二:设此数列的首项为a1,公差为d,项数为2k(k∈N*),
    根据题意,得即
    ∴解得
    ∴此数列的首项为,公差为,项数为8.
    8.设等差数列的前n项和为Sn.已知a3=12,S12>0,S13<0.
    (1)求公差d的取值范围;
    (2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
    [解析] (1)依题意,

    由a3=12,得a1+2d=12.③
    将③分别代入②①,得,
    解得-(2)由d<0可知{an}是递减数列,因此若在1≤n≤12中,使an>0且an+1<0,则Sn最大.
    由于S12=6(a6+a7)>0,S13=13a7<0,可得
    a6>0,a7<0,
    故在S1,S2,…,S12中S6的值最大.
    相关推荐
    上一篇:高中数学必修5 模块综合检测 Word版含解析 下一篇:让我印高中数学必修5练习 等比数列的性质 Word版含解析
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案