• 五年级冀教版课件
  • 高一物理课件
  • 高三历史课件
  • 三年级语文课件
  • 高二西师大版课件
  • 九年级湘教版课件
  • 高二生物课件
  • 九年级苏教版课件
  • 高一语文课件
  • 高中数学选修4-4同步备课教案:2-1参数方程的概念

    2020-11-30 高三上册数学人教版

    第二章 参数方程
    【课标要求】
    1、了解抛物运动轨迹的参数方程及参数的意义。
    2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。
    3、会进行曲线的参数方程与普通方程的互化。
    第一课时 参数方程的概念
    一、教学目标:
    1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
    2.分析曲线的几何性质,选择适当的参数写出它的参数方程。
    二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
    教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
    三、教学方法:启发诱导,探究归纳
    四、教学过程
    (一).参数方程的概念
    1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为,与地面成角,如何来刻画铅球运动的轨迹呢?
    2.分析探究理解:
    (1)、斜抛运动:
    (2)、抽象概括:参数方程的概念。说明:(1)一般来说,参数的变化范围是有限制的。
    (2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
    (3)平抛运动:
    (4)思考交流:把引例中求出的铅球运动的轨迹
    的参数方程消去参数t后,再将所得方程与原方程进行比较,体会参数方程的作用。
    (二)、应用举例:
    例1、已知曲线C的参数方程是 (t为参数)(1)判断点(0,1), (5,4)与曲线C的位置关系;(2)已知点(6,a)在曲线C上,求a的值。
    分析:只要把参数方程中的t消去化成关于x,y的方程问题易于解决。学生练习。
    反思归纳:给定参数方程要研究问题可化为关于x,y的方程问题求解。
    例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为
    rad/s,试以时间t为参数,建立质点运动轨迹的参数方程。
    解析:如图,运动开始时质点位于A点处,此时t=0,设动点M(x,y)对应时刻t,由图可知,得参数方程为。
    反思归纳:求曲线的参数方程的一般步骤。
    (三)、课堂练习:
    (四)、小结:1.本节学习的数学知识;2、本节学习的数学方法。学生自我反思、教师引导,抓住重点知识和方法共同小结归纳、进一步深化理解。
    (五)、作业:
    补充:设飞机以匀速v=150m/s作水平飞行,若在飞行高度h=588m处投弹(设投弹的初速度等于飞机的速度,且不计空气阻力)。(1)求炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标。简解:(1)。(2)1643m。
    五、教学反思:
    相关推荐
    上一篇:高中数学 解决有关测量距离的问题示范教案 新人教A版必修5 下一篇:让我印高中数学选修4-5教案 含有绝对值的不等式的证明
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案