• 七年级青岛版教案
  • 高二化学教案
  • 九年级生物教案
  • 四年级物理教案
  • 八年级上册教案
  • 六年级岳麓版教案
  • 七年级教科版教案
  • 一年级上册教案
  • 七年级下册教案
  • 高中数学必修四课时训练 三角函数的图象与性质 1.4.2(二) Word版含答案

    2020-12-03 高二下册数学人教版

    1.4.2 正弦函数、余弦函数的性质(二)
    课时目标 1.掌握y=sinx,y=cosx的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y=sinx,y=cosx的单调性,并能用单调性比较大小.3.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的单调区间.
    正弦函数、余弦函数的性质:
    函数
    y=sinx
    y=cosx
    图象
    定义域
    ______
    ______
    值域
    ______
    ______
    奇偶性
    ______
    ______
    周期性
    最小正周期:______
    最小正周期:______
    单调性
    在__________________________________上单调递增;在__________________________________________________上单调递减
    在__________________________________________上单调递增;在______________________________上单调递减
    最值
    在________________________时,ymax=1;在________________________________________时,ymin=-1
    在______________时,ymax=1;在__________________________时,ymin=-1
    一、选择题
    1.若y=sinx是减函数,y=cosx是增函数,那么角x在(  )
    A.第一象限B.第二象限
    C.第三象限D.第四象限
    2.若α,β都是第一象限的角,且α<β,那么(  )
    A.sinα>sinβB.sinβ>sinα
    C.sinα≥sinβD.sinα与sinβ的大小不定
    3.函数y=sin2x+sinx-1的值域为(  )
    A.B.
    C.D.
    4.函数y=|sinx|的一个单调增区间是(  )
    A.B.
    C.D.
    5.下列关系式中正确的是(  )
    A.sin 11°B.sin 168°C.sin 11°D.sin 168°6.下列函数中,周期为π,且在上为减函数的是(  )
    A.y=sin(2x+) B.y=cos(2x+)
    C.y=sin(x+) D.y=cos(x+)
    题 号
    1
    2
    3
    4
    5
    6
    答 案
    二、填空题
    7.函数y=sin(π+x),x∈的单调增区间是____________.
    8.函数y=2sin(2x+)(-≤x≤)的值域是________.
    9.sin1,sin2,sin3按从小到大排列的顺序为__________________.
    10.设|x|≤,函数f(x)=cos2x+sinx的最小值是______.
    三、解答题
    11.求下列函数的单调增区间.
    (1)y=1-sin;
    (2)y=log(cos2x).
    12.已知函数f(x)=2asin+b的定义域为,最大值为1,最小值为-5,求a和b的值.
    能力提升
    13.已知sinα>sinβ,α∈,β∈,则(  )
    A.α+β>πB.α+β<π
    C.α-β≥-π D.α-β≤-π
    14.已知函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,则ω的最小值等于(  )
    A.B.C.2D.3
    1.求函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法是:
    把ωx+φ看成一个整体,由2kπ-≤ωx+φ≤2kπ+ (k∈Z)解出x的范围,所得区间即为增区间,由2kπ+≤ωx+φ≤2kπ+π (k∈Z)解出x的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.
    2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.
    3.求三角函数值域或最值的常用求法
    将y表示成以sinx(或cosx)为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y的范围.
    1.4.2 正弦函数、余弦函数的性质(二)
    答案
    知识梳理
    R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-+2kπ,+2kπ](k∈Z) [+2kπ,+2kπ] (k∈Z) [-π+2kπ,2kπ] (k∈Z) [2kπ,π+2kπ] (k∈Z) x=+2kπ (k∈Z)
    x=-+2kπ (k∈Z) x=2kπ (k∈Z) x=π+2kπ (k∈Z)
    作业设计
    1.C 2.D
    3.C [y=sin2x+sinx-1=(sinx+)2-
    当sinx=-时,ymin=-;
    当sinx=1时,ymax=1.]
    4.C [由y=|sinx|图象易得函数单调递增区间,k∈Z,当k=1时,得为y=|sinx|的单调递增区间.]
    5.C [∵sin168°=sin (180°-12°)=sin12°,
    cos 10°=sin (90°-10°)=sin 80°
    由三角函数线得sin 11°即sin 11°6.A [因为函数周期为π,所以排除C、D.又因为y=cos(2x+)=-sin 2x在上为增函数,故B不符合.故选A.]
    7.
    8.[0,2]
    解析 ∵-≤x≤,∴0≤2x+≤.
    ∴0≤sin(2x+)≤1,∴y∈[0,2]
    9.b解析 ∵1<<2<3<π,
    sin(π-2)=sin 2,sin(π-3)=sin 3.
    y=sin x在上递增,且0<π-3<1<π-2<,
    ∴sin(π-3)∵b10.
    解析 f(x)=cos2x+sin x=1-sin2x+sin x
    =-(sin x-)2+
    ∵|x|≤,∴-≤sin x≤.
    ∴当sinx=-时,f(x)min=.
    11.解 (1)由2kπ+≤≤2kπ+π,k∈Z,
    得4kπ+π≤x≤4kπ+3π,k∈Z.
    ∴y=1-sin的增区间为[4kπ+π,4kπ+3π] (k∈Z).
    (2)由题意得cos2x>0且y=cos2x递减.
    ∴x只须满足:2kπ<2x<2kπ+,k∈Z.
    ∴kπ∴y=log(cos2x)的增区间为,k∈Z.
    12.解 ∵0≤x≤,∴-≤2x-≤π,
    ∴-≤sin≤1,易知a≠0.
    当a>0时,f(x)max=2a+b=1,
    f(x)min=-a+b=-5.
    由,解得.
    当a<0时,f(x)max=-a+b=1,
    f(x)min=2a+b=-5.
    由,解得.
    13.A [∵β∈,
    ∴π-β∈,且sin(π-β)=sinβ.
    ∵y=sinx在x∈上单调递增,
    ∴sinα>sinβ⇔sinα>sin(π-β)
    ⇔α>π-β⇔α+β>π.]
    14.B [要使函数f(x)=2sinωx (ω>0)在区间[-,]上的最小值是-2,则应有≤或T≤,即≤或≤π,解得ω≥或ω≥6.
    ∴ω的最小值为,故选B.]
    相关推荐
    上一篇:高中数学必修四课时训练 两角和与差的正弦、余弦和正切公式 3.1.2 Word版含答案 下一篇:让我印高中数学选修2-2课时作业:第二章 推理与证明2.2.2反证法 Word版含解析
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 m.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案