温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
课后提升作业十八
两条直线平行与垂直的判定
(45分钟 70分)
一、选择题(每小题5分,共40分)
1.(2016·天津高一检测)若直线2mx+y+6=0与直线(m-3)x-y+7=0平行,则m的值为 ( )
A.-1 B.1 C.1或-1 D.3
【解析】选B.因为两条直线平行,所以=≠.
解得m=1.
2.下列各对直线不互相垂直的是 ( )
A.l1的倾斜角为120°,l2过点P(1,0),Q(4,)
B.l1的斜率为-,l2过点P(1,1),Q
C.l1的倾斜角为30°,l2过点P(3,),Q(4,2)
D.l1过点M(1,0),N(4,-5),l2过点P(-6,0),Q(-1,3)
【解析】选C.选项C中,kPQ=,所以l1不与l2垂直.
3.(2016·吉林高一检测)已知过点A(a,b)与B(b-1,a+1)的直线l1与直线l2平行,则l2的斜率为 ( )
A.1 B.-1 C.不存在 D.0
【解析】选B.由题意可知l2的斜率为:k2=k1==-1.
【延伸探究】若本题条件“平行”换为“垂直”,其他条件不变,其结论又如何呢?
【解析】选A.因为l1⊥l2,所以k1·k2=-1,又因为k1==-1,所以k2=1.
4.直线l1过点A(3,1),B(-3,4),直线l2过点C(1,3),D(-1,4),则直线l1与l2的位置关系为 ( )
A.平行 B.重合 C.垂直 D.无法判断
【解析】选A.由l1过点A(3,1),B(-3,4),
得kAB=-,由l2过点C(1,3),D(-1,4),
得kCD=-,结合所过点的坐标知l1∥l2.
5.(2016·烟台高一检测)已知直线l与过点M(-,),N(,-)的直线垂直,则直线l的倾斜角是 ( )
A.60° B.120° C.45° D.135°
【解析】选C.设直线l的倾斜角为θ.
kMN==-1.
因为直线l与过点M(-,),N(,-)的直线垂直,
所以klkMN=-1,所以kl=1.所以tanθ=1,
因为0°≤θ<180°,所以θ=45°.
6.(2016·北京高一检测)已知l1的斜率是2,l2过点A(-1,-2),B(x,6),且l1∥l2,则lox= ( )
A. B.- C.2 D.-2
【解析】选B.因为l1∥l2,所以=2,即x=3,故lox=lo3=-.
7.设点P(-4,2),Q(6,-4),R(12,6),S(2,12),则下面四个结论:①PQ∥SR;②PQ⊥PS;③PS∥QS;④RP⊥QS.正确的个数是 ( )
A.1 B.2 C.3 D.4
【解析】选C.因为kPQ==-,kSR==-,
kPS==,kQS==-4,kPR==.
又P,Q,S,R四点不共线,
所以PQ∥SR,PS⊥PQ,RP⊥QS.
故①②④正确.
8.(2016·合肥高一检测)已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m的值为 ( )
A.1 B.0
C.0或2 D.0或1
【解题指南】分直线AB与CD的斜率存在与不存在两种情况分别求m的值.
【解析】选D.当AB与CD斜率均不存在时,m=0,
此时AB∥CD,当kAB=kCD时,m=1,此时AB∥CD.
【误区警示】解答本题易出现选A的错误,导致出现这种错误的原因是忽略了直线AB与CD的斜率不存在的情况.
二、填空题(每小题5分,共10分)
9.直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=____________;若l1∥l2,则b=____________.
【解题指南】利用一元二次方程根与系数的关系k1·k2=-及两直线垂直与平行的条件求解.
【解析】若l1⊥l2,则k1k2=-1.
又k1k2=-,所以-=-1,所以b=2.
若l1∥l2,则k1=k2.
故Δ=(-3)2-4×2·(-b)=0,所以b=-.
答案:2 -
10.已知点M(1,-3),N(1,2),P(5,y),且∠NMP=90°,则log8(7+y)=____ ________.
【解析】由M,N,P三点的坐标,得MN垂直x轴,
又∠NMP=90°,所以kMP=0,所以y=-3,
所以log8(7+y)=log84=.
答案:
【延伸探究】若把本题中“∠NMP=90°”改为“log8(7+y)=”,其他条件不变,则∠NMP=____________.
【解析】由log8(7+y)=,得y=-3,
故点P(5,-3),因为MN垂直x轴,kMP=0,
所以∠NMP=90°.
答案:90°
三、解答题(每小题10分,共20分)
11.直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1∥l2或l1⊥l2时,分别求实数m的值.
【解析】当l1∥l2时,由于直线l2的斜率k2存在,则直线l1的斜率k1也存在,
则k1=k2,即=,解得m=3;
当l1⊥l2时,由于直线l2的斜率k2存在且不为0,则直线l1的斜率k1也存在,则k1·k2=-1,
即·=-1,解得m=-.
综上所述,当l1∥l2时,m的值为3;当l1⊥l2时,m的值为-.
12.(2016·郑州高一检测)已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.
(1)∠MOP=∠OPN(O是坐标原点).
(2)∠MPN是直角.
【解析】设P(x,0),
(1)因为∠MOP=∠OPN,所以OM∥NP.
所以kOM=kNP.又kOM==1,
kNP==(x≠5),
所以1=,所以x=7,即点P的坐标为(7,0).
(2)因为∠MPN=90°,所以MP⊥NP,
根据题意知MP,NP的斜率均存在,
所以kMP·kNP=-1.
kMP=(x≠2),kNP=(x≠5),
所以×=-1,
解得x=1或x=6,即点P的坐标为(1,0)或(6,0).
【能力挑战题】
如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5m,宽AB=3m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路AC与DM相互垂直?
【解析】如图,以点B为坐标原点,BC,BA所在直线分别为x轴,y轴建立直角坐标系.
由AD=5m,AB=3m,可得C(5,0),D(5,3),A(0,3).
设点M的坐标为(x,0),
因为AC⊥DM,所以kAC·kDM=-1.
所以·=-1,即x==3.2,即BM=3.2m时,两条小路AC与DM相互垂直.
关闭Word文档返回原板块
人教版高中数学必修二检测直线与圆 课后提升作业 十八 3.1.2 Word版含解析
2021-10-01 高一下册数学人教版